RootSolversModule.F90 Source File


Contents

Source Code


Source Code

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!> A Module For Computing General Matrix Roots.
MODULE RootSolversModule
  USE DataTypesModule, ONLY : NTREAL
  USE EigenBoundsModule, ONLY : GershgorinBounds
  USE InverseSolversModule, ONLY : Invert
  USE LoadBalancerModule, ONLY : PermuteMatrix, UndoPermuteMatrix
  USE LoggingModule, ONLY : EnterSubLog, ExitSubLog, WriteListElement, &
       & WriteHeader, WriteElement
  USE PolynomialSolversModule, ONLY : Polynomial_t, ConstructPolynomial, &
       & DestructPolynomial, FactorizedCompute, SetCoefficient
  USE PMatrixMemoryPoolModule, ONLY : MatrixMemoryPool_p, &
       & DestructMatrixMemoryPool
  USE PSMatrixAlgebraModule, ONLY : MatrixMultiply, MatrixNorm, &
       & IncrementMatrix, ScaleMatrix
  USE PSMatrixModule, ONLY : Matrix_ps, ConstructEmptyMatrix, CopyMatrix, &
       & DestructMatrix, FillMatrixIdentity, PrintMatrixInformation
  USE SolverParametersModule, ONLY : SolverParameters_t, PrintParameters, &
       & DestructSolverParameters
  USE SquareRootSolversModule, ONLY : SquareRoot, InverseSquareRoot
  IMPLICIT NONE
  PRIVATE
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !! Solvers
  PUBLIC :: ComputeRoot
  PUBLIC :: ComputeInverseRoot
CONTAINS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !> Compute a general matrix root.
  RECURSIVE SUBROUTINE ComputeRoot(InputMat, OutputMat, root, &
       & solver_parameters_in)
    !> The input matrix
    TYPE(Matrix_ps), INTENT(IN)  :: InputMat
    !> OutputMat = InputMat^1/root.
    TYPE(Matrix_ps), INTENT(INOUT) :: OutputMat
    !> Which root to compute.
    INTEGER, INTENT(IN) :: root
    !> Parameters for the solver
    TYPE(SolverParameters_t), INTENT(IN), OPTIONAL :: solver_parameters_in
    !! Handling Solver Parameters
    TYPE(SolverParameters_t) :: solver_parameters
    !! Local Variables
    TYPE(Matrix_ps) :: TempMat

    !! Handle The Optional Parameters
    IF (PRESENT(solver_parameters_in)) THEN
       solver_parameters = solver_parameters_in
    ELSE
       solver_parameters = SolverParameters_t()
    END IF

    IF (solver_parameters%be_verbose) THEN
       CALL WriteHeader("Root Solver")
       CALL EnterSubLog
       CALL WriteElement(key="Root", VALUE=root)
       CALL PrintParameters(solver_parameters)
    END IF

    !! Handle base cases, or call to general implementation.
    IF (root .EQ. 1) THEN
       CALL CopyMatrix(InputMat, OutputMat)
    ELSE IF (root .EQ. 2) THEN
       CALL SquareRoot(InputMat, OutputMat, solver_parameters)
    ELSE IF (root .EQ. 3) THEN
       CALL MatrixMultiply(InputMat, InputMat, TempMat, &
            & threshold_in=solver_parameters%threshold)
       CALL ComputeRootImplementation(TempMat, OutputMat, 6, &
            & solver_parameters)
    ELSE IF (root .EQ. 4) THEN
       CALL SquareRoot(InputMat, TempMat, solver_parameters)
       CALL SquareRoot(TempMat, OutputMat, solver_parameters)
       CALL DestructMatrix(TempMat)
    ELSE
       CALL ComputeRootImplementation(InputMat, OutputMat, root, &
            & solver_parameters)
    END IF

    IF (solver_parameters%be_verbose) THEN
       CALL ExitSubLog
    END IF

    CALL DestructSolverParameters(solver_parameters)

  END SUBROUTINE ComputeRoot
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !> Actual implementation of computing a general matrix root.
  SUBROUTINE ComputeRootImplementation(InputMat, OutputMat, root, &
       & solver_parameters)
    !> The input matrix
    TYPE(Matrix_ps), INTENT(IN)  :: InputMat
    !> OutputMat = InputMat^1/root.
    TYPE(Matrix_ps), INTENT(INOUT) :: OutputMat
    !> Which root to compute.
    INTEGER, INTENT(IN) :: root
    !> Parameters for the solver
    TYPE(SolverParameters_t), INTENT(IN) :: solver_parameters
    !! Handling Solver Parameters
    TYPE(SolverParameters_t) :: fixed_parameters
    !! Local Variables
    TYPE(Matrix_ps) :: RaisedMat
    TYPE(Matrix_ps) :: TempMat
    TYPE(Polynomial_t) :: power_poly
    INTEGER :: counter

    !! Set up the solver parameters
    fixed_parameters%threshold = solver_parameters%threshold
    fixed_parameters%be_verbose = solver_parameters%be_verbose
    fixed_parameters%do_load_balancing = solver_parameters%do_load_balancing
    fixed_parameters%BalancePermutation = solver_parameters%BalancePermutation

    !! We will use the formula A^(1/x) = A*A^(1/x - 1)
    !! So first, we raise to the root-1 power
    CALL ConstructPolynomial(power_poly,root)
    DO counter=1,root-1
       CALL SetCoefficient(power_poly,counter,REAL(0.0,NTREAL))
    END DO
    CALL SetCoefficient(power_poly,root,REAL(1.0,NTREAL))
    CALL FactorizedCompute(InputMat, RaisedMat, power_poly, &
         & fixed_parameters)
    CALL DestructPolynomial(power_poly)

    !! Now compute the inverse pth root
    CALL ComputeInverseRoot(RaisedMat, TempMat, root, solver_parameters)

    !! Multiply by the original matrix
    CALL MatrixMultiply(InputMat, TempMat, OutputMat, &
         & threshold_in=solver_parameters%threshold)

    !! Cleanup
    CALL DestructMatrix(RaisedMat)
    CALL DestructMatrix(TempMat)
  END SUBROUTINE ComputeRootImplementation
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !> Compute a general inverse matrix root.
  RECURSIVE SUBROUTINE ComputeInverseRoot(InputMat, OutputMat, root, &
       & solver_parameters_in)
    !> The input matrix
    TYPE(Matrix_ps), INTENT(IN)  :: InputMat
    !> OutputMat = InputMat^-1/root.
    TYPE(Matrix_ps), INTENT(INOUT) :: OutputMat
    !> Which root to compute.
    INTEGER, INTENT(IN) :: root
    !> Parameters for the solver.
    TYPE(SolverParameters_t), INTENT(IN), OPTIONAL :: solver_parameters_in
    !! Handling Solver Parameters
    TYPE(SolverParameters_t) :: solver_parameters
    !! Local Variables
    TYPE(Matrix_ps) :: TempMat

    !! Handle The Optional Parameters
    !! Optional Parameters
    IF (PRESENT(solver_parameters_in)) THEN
       solver_parameters = solver_parameters_in
    ELSE
       solver_parameters = SolverParameters_t()
    END IF

    IF (solver_parameters%be_verbose) THEN
       CALL WriteHeader("Inverse Root Solver")
       CALL EnterSubLog
       CALL WriteElement(key="Root", VALUE=root)
       CALL PrintParameters(solver_parameters)
    END IF

    !! Handle base cases, or call to general implementation.
    IF (root .EQ. 1) THEN
       CALL Invert(InputMat, OutputMat, solver_parameters)
    ELSE IF (root .EQ. 2) THEN
       CALL InverseSquareRoot(InputMat, OutputMat, solver_parameters)
    ELSE IF (root .EQ. 3) THEN
       CALL ComputeRoot(InputMat,TempMat,3,solver_parameters)
       CALL Invert(TempMat, OutputMat, solver_parameters)
    ELSE IF (root .EQ. 4) THEN
       CALL SquareRoot(InputMat, TempMat, solver_parameters)
       CALL InverseSquareRoot(TempMat, OutputMat, solver_parameters)
       CALL DestructMatrix(TempMat)
    ELSE
       CALL ComputeInverseRootImplemention(InputMat, OutputMat, root, &
            & solver_parameters)
    END IF

    IF (solver_parameters%be_verbose) THEN
       CALL ExitSubLog
    END IF

    CALL DestructSolverParameters(solver_parameters)
  END SUBROUTINE ComputeInverseRoot
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !> Compute a general inverse matrix root for root > 4.
  SUBROUTINE ComputeInverseRootImplemention(InputMat, OutputMat, root, &
       & solver_parameters_in)
    !> Matrix to compute the root of.
    TYPE(Matrix_ps), INTENT(IN)  :: InputMat
    !> The inverse nth root of that matrix.
    TYPE(Matrix_ps), INTENT(INOUT) :: OutputMat
    !> Which inverse root to compute.
    INTEGER, INTENT(IN) :: root
    !> Parameters for the solver.
    TYPE(SolverParameters_t), INTENT(IN), OPTIONAL :: solver_parameters_in
    !! Constants.
    REAL(NTREAL), PARAMETER :: NEGATIVE_ONE = -1.0
    !! Handling Solver Parameters
    TYPE(SolverParameters_t) :: solver_parameters
    !! Local Matrices
    TYPE(Matrix_ps) :: SqrtMat, FthrtMat
    TYPE(Matrix_ps) :: IdentityMat
    TYPE(Matrix_ps) :: Mk
    TYPE(Matrix_ps) :: IntermediateMat
    TYPE(Matrix_ps) :: IntermediateMatP
    TYPE(Matrix_ps) :: Temp
    !! Local Variables
    INTEGER :: target_root
    REAL(NTREAL) :: e_min
    REAL(NTREAL) :: e_max
    REAL(NTREAL) :: scaling_factor
    REAL(NTREAL) :: norm_value
    !! Temporary Variables
    INTEGER :: outer_counter
    INTEGER :: inner_counter
    TYPE(MatrixMemoryPool_p) :: pool

    !! Handle The Optional Parameters
    !! Optional Parameters
    IF (PRESENT(solver_parameters_in)) THEN
       solver_parameters = solver_parameters_in
    ELSE
       solver_parameters = SolverParameters_t()
    END IF

    IF (solver_parameters_in%be_verbose) THEN
       CALL WriteHeader("Root Solver")
       CALL EnterSubLog
       CALL WriteHeader("Citations")
       CALL EnterSubLog
       CALL WriteListElement("nicholas2008functions")
       CALL ExitSubLog
       CALL PrintParameters(solver_parameters)
    END IF

    !! Compute The Scaling Factor
    CALL GershgorinBounds(InputMat, e_min, e_max)
    scaling_factor = e_max/SQRT(2.0)**(1.0/root)

    !! Compute the target root (adjust for the fact that we just took the
    !! fourth root.
    target_root = 0
    IF (MOD(root,4) .EQ. 0) THEN
       target_root = root/4
    ELSE IF (MOD(root,4) .EQ. 1 .OR. MOD(root,4) .EQ. 3) THEN
       target_root = root
    ELSE
       target_root = (root-2)/2 + 1
    END IF

    !! Initialize
    !! Fourth Root Matrix
    CALL SquareRoot(InputMat, SqrtMat, solver_parameters)
    CALL SquareRoot(SqrtMat, FthrtMat, solver_parameters)
    CALL DestructMatrix(SqrtMat)

    !! Setup the Matrices
    CALL ConstructEmptyMatrix(IdentityMat, InputMat)
    CALL FillMatrixIdentity(IdentityMat)

    !! Load Balancing Step
    IF (solver_parameters%do_load_balancing) THEN
       CALL PermuteMatrix(FthrtMat, FthrtMat, &
            & solver_parameters%BalancePermutation, memorypool_in=pool)
       CALL PermuteMatrix(IdentityMat, IdentityMat, &
            & solver_parameters%BalancePermutation, memorypool_in=pool)
    END IF

    CALL CopyMatrix(IdentityMat, OutputMat)
    CALL ScaleMatrix(OutputMat, 1.0/scaling_factor)

    CALL CopyMatrix(FthrtMat, Mk)
    CALL ScaleMatrix(Mk, 1.0/(scaling_factor**target_root))
    CALL DestructMatrix(FthrtMat)

    CALL ConstructEmptyMatrix(IntermediateMat, InputMat)
    CALL ConstructEmptyMatrix(IntermediateMatP, InputMat)
    CALL ConstructEmptyMatrix(Temp, InputMat)

    outer_counter = 1
    IF (solver_parameters%be_verbose) THEN
       CALL WriteHeader("Iterations")
       CALL EnterSubLog
    END IF
    norm_value = solver_parameters%converge_diff + 1.0_NTREAL
    DO outer_counter = 1,solver_parameters%max_iterations
       IF (solver_parameters%be_verbose .AND. outer_counter .GT. 1) THEN
          CALL WriteListElement(key="Convergence", VALUE=norm_value)
       END IF

       CALL CopyMatrix(IdentityMat, IntermediateMat)
       CALL ScaleMatrix(IntermediateMat, &
            & REAL(target_root+1,NTREAL))
       CALL IncrementMatrix(Mk, IntermediateMat, &
            & alpha_in=NEGATIVE_ONE)
       CALL ScaleMatrix(IntermediateMat, &
            & REAL(1.0,NTREAL)/target_root)

       CALL MatrixMultiply(OutputMat, IntermediateMat, Temp, &
            & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
       CALL CopyMatrix(Temp, OutputMat)

       CALL CopyMatrix(IntermediateMat, IntermediateMatP)
       DO inner_counter = 1, target_root-1
          CALL MatrixMultiply(IntermediateMat, IntermediateMatP, Temp, &
               & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
          CALL CopyMatrix(Temp, IntermediateMatP)
       END DO

       CALL MatrixMultiply(IntermediateMatP, Mk, Temp, &
            & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
       CALL CopyMatrix(Temp, Mk)

       CALL IncrementMatrix(IdentityMat, Temp, &
            & alpha_in=NEGATIVE_ONE)
       norm_value = MatrixNorm(Temp)

       IF (norm_value .LE. solver_parameters%converge_diff) THEN
          EXIT
       END IF
    END DO
    IF (solver_parameters%be_verbose) THEN
       CALL ExitSubLog
       CALL WriteElement(key="Total_Iterations", VALUE=outer_counter-1)
       CALL PrintMatrixInformation(OutputMat)
    END IF

    IF (MOD(root,4) .EQ. 1 .OR. MOD(root,4) .EQ. 3) THEN
       CALL MatrixMultiply(OutputMat, OutputMat, Temp, &
            & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
       CALL MatrixMultiply(Temp, Temp, OutputMat, &
            & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
    ELSE IF (MOD(root,4) .NE. 0) THEN
       CALL MatrixMultiply(OutputMat, OutputMat, Temp, &
            & threshold_in=solver_parameters%threshold, memory_pool_in=pool)
       CALL CopyMatrix(Temp, OutputMat)
    END IF

    !! Undo Load Balancing Step
    IF (solver_parameters%do_load_balancing) THEN
       CALL UndoPermuteMatrix(OutputMat, OutputMat, &
            & solver_parameters%BalancePermutation, memorypool_in=pool)
    END IF

    !! Cleanup
    IF (solver_parameters_in%be_verbose) THEN
       CALL ExitSubLog
    END IF
    CALL DestructMatrix(IdentityMat)
    CALL DestructMatrix(Mk)
    CALL DestructMatrix(IntermediateMat)
    CALL DestructMatrix(IntermediateMatP)
    CALL DestructMatrix(Temp)
    CALL DestructMatrixMemoryPool(pool)
  END SUBROUTINE ComputeInverseRootImplemention
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
END MODULE RootSolversModule