AnalysisModule Module

Methods for analyzing the results of electronic structure calculations.



Contents


Subroutines

public subroutine PivotedCholeskyDecomposition(AMat, LMat, rank_in, solver_parameters_in)

Compute The Pivoted Cholesky Decomposition of a Hermitian Semi-Definite matrix. This is one way to generate localized orbitals.

Arguments

Type IntentOptional Attributes Name
type(Matrix_ps), intent(in) :: AMat

The matrix A, must be hermitian, positive semi-definite.

type(Matrix_ps), intent(inout) :: LMat

The matrix computed.

integer, intent(in) :: rank_in

The target rank of the matrix.

type(SolverParameters_t), intent(in), optional :: solver_parameters_in

Tarameters for the solver

public subroutine ReduceDimension(this, dim, ReducedMat, solver_parameters_in)

When we want to only compute the first n eigenvalues of a matrix, this routine will project out the higher eigenvalues.

Arguments

Type IntentOptional Attributes Name
type(Matrix_ps), intent(inout) :: this

The starting matrix.

integer, intent(in) :: dim

The number of eigenvalues ot keep.

type(Matrix_ps), intent(inout) :: ReducedMat

a dimxdim matrix with the same first n eigenvalues as the first.

type(SolverParameters_t), intent(in), optional :: solver_parameters_in

The solver parameters.